Genetic control of cobalamin binding in normal and mutant cells: assignment of the gene for 5-methyltetrahydrofolate:L-homocysteine S-methyltransferase to human chromosome 1.

نویسندگان

  • I S Mellman
  • P F Lin
  • F H Ruddle
  • L E Rosenberg
چکیده

When extracts prepared from cultured human or rodent fibroblasts grown in medium containing [(57)Co]cobalamin were analyzed by polyacrylamide gel electrophoresis, most of the intracellular radioactivity migrated with the activity of the cobalamin-dependent enzyme 5-methyltetrahydrofolate:L-homocysteine S-methyltransferase (EC 2.1.1.13). Because the rodent and human forms of this enzyme are electrophoretically different, we used the binding of [(57)Co]cobalamin to detect the presence of the human methyltransferase isozyme in rodent-human somatic cell hybrids. As expected, binding and methyltransferase activities were found to cosegregate, thus confirming genetically their electrophoretic identity. Accordingly, we examined the [(57)Co]cobalamin-binding patterns and human chromosome contents of a panel of 12 rodent-human hybrid clones, and concluded that the gene for the methyltransferase (designated Mtr) is located on human chromosome 1. Using this information, we probed the nature of the molecular defect exhibited by fibroblasts cultured from patients expressing the cbl C mutation. Although these cells are unable to associate newly taken up [(57)Co]cobalamin with the methyltransferase, hybrids of mouse L-cells and cbl C cells containing chromosome 1 show a "reappearance" of the human [(57)Co]cobalamin-methyltransferase. These results indicate that the cbl C mutation does not affect the methyltransferase apoprotein, but rather some metabolic step that must convert cobalamin to a chemical form capable of attaching to the enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maternal Betaine Homocysteine Methyltransferase Gene Polymorphism as a Risk Factor for Trisomy

Disorder in re-methylation process of homocysteine to methionine due to mutation in betaine homocysteine methyltransferase enzyme (BHMT) coding gene, leads to decrease in S-adenosyl methionine (SAM) synthesis which takes part in DNA methylation as a methyl donor. As a result, it can promote hypo-methylation of DNA, chromosome instability, and chromosome missegregation, which in turn is one of t...

متن کامل

P-31: The Alteration of SpermatogenesisHas A Correlation with Sertoli Cell Mitochondrial Abnormal Morphology in Cytotoxicity of Testicular Tissue Mediatedwith Monosodium

Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...

متن کامل

P-30: The Effect of The T26248G Polymorphism on Putative MethyltransferaseNsun7 Protein Function and Its Role in Male Infertility

Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Methionine synthesis by extracts of Salmonella typhimurium.

1. Following the genetic studies by Smith (1961) and Smith & Childs (1963) with methionine auxotrophs of Salmonella typhimurium, methionine formation from homocysteine has been investigated with cell-free extracts of this organism. 2. As found with Escherichia coli (Woods, Foster & Guest, 1964), methyl groups are formed by an N(5)N(10)-methylenetetrahydrofolate reductase. They are then transfer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 76 1  شماره 

صفحات  -

تاریخ انتشار 1979